-
Wentworth McClanahan posted an update a month ago
Furthermore, white blood cells showed defective invitro killing of Staphylococcus aureus, consistent with a specific granule deficiency. Finally, patient bone marrow-derived CD34
cells showed markedly impaired invitro expansion and differentiation toward the neutrophil lineage. Before her molecular diagnosis, our patient underwent hematopoietic stem cell transplantation and is well 8 years later.
This report highlights an important role for SMARCD2 in human myelopoiesis and the curative effect of hematopoietic stem cell transplantation for the hematopoietic features of SMARCD2 deficiency.
This report highlights an important role for SMARCD2 in human myelopoiesis and the curative effect of hematopoietic stem cell transplantation for the hematopoietic features of SMARCD2 deficiency.In this manuscript, we interpret the implications of a discovery we made in 1993 for the understanding of the spread of excitation waves in axon, central gray matter (isolated retina) and heart. We propose that the initial burst of energy dissipation in these waves measured as potentials drops, ionic activities marked changes or optical properties being mostly the effect of dissociated water becoming liquid water and be reversible due to the further on dissociation during the refractory period. We also propose experiments in order to falsify or agree with this conjecture.Recently, artificial blood vessels modified by integrin α4β1 ligand, such as REDV, showed endothelialization improvement and antithrombotic properties have been reported. Early endothelialization was affected by the type of circulating cells captured by the peptide in the initial transplantation state, however, it is still not clarified. In this study, we identified in vitro circulating cells bound with the peptides arginine-glutamic acid-aspartic acid-valine (REDV) or histidine-glycine-glycine-valine-arginine-leucine-tyrosine (HGGVRLY). The effect of free C- or N-terminal of HGGVRLY on the type of peptide-binding cells was also studied. The rat circulating cells were isolated from blood and incubated with 5(6)-carboxyfluorescein (5/6-FAM, F) labeled F-REDV (C-terminal free), F-HGGVRLY (C-terminal free), or HGGVRLY-F (N-terminal free). Furthermore, peptide-binding cells were identified by co-staining with various antibodies labeled with PE, PerCP/Cy5.5, or APC. N-terminal free HGGVRLY-F was found to bind to more circulating cells than C-terminal free F-REDV and F-HGGVRLY. The ratio of integrin α4β1 positive cell bound with F-REDV, F-HGGVRLY, or HGGVRLY-F reached over 90 %, demonstrating that HGGVRLY is also a ligand of integrin α4β1. Among identified cell types, we found that F-REDV mainly bounds with EPC and BMSC, while F-HGGVRLY with BMSC. HGGVRLY-F bounds with EPC and BMSC, exhibiting a higher EPC binding ratio than F-REDV and F-HGGVRLY.Ephrin family proteins are cell surface molecules that regulate several cellular functions through cell-cell interactions. During nervous tissue repair after injury, the expression of ephrin subtypes in astrocytes is altered, affecting the axonal elongation and migration of neuronal precursors. However, the mechanism regulating the expression of ephrin subtypes in astrocytes has not been investigated. IBG1 cell line Herein, we studied the effects of endothelin-1 (ET-1) on the expression of ephrin subtypes in cultured rat astrocytes. Our results showed that ET-1 (100 nM) treatment for 1-24 h reduced the expression of ephrin-A2, -A4, -B2, and -B3 mRNA and protein in astrocytes, whereas the expression of ephrin-A1, -A3, -A5, and -B1 mRNA were not affected. Sarafotoxin S6c, a selective ETB receptor agonist, decreased the expression of ephrin-A2, -A4, -B2, and -B3 in cultured astrocytes. The decrease in ephrin-A2, -A4, -B2, and -B3 expression by ET-1 treatment was reduced in the presence of BQ788, an ETB receptor antagonist, while FR139317, an ETA receptor antagonist, had no effects. These results suggest that ET-1 is a signaling molecule that downregulates ephrin-A2, -A4, -B2, and -B3 expression in astrocytes.
Animal and neuroimaging studies suggest that the volume of the motor-circuit region decreases in tardive dyskinesia (TD). This study examined the differences in functional connectivity within the motor circuit of patients with schizophrenia with and without TD to further clarify how the dysfunction is related to the pathogenesis of TD.
Functional magnetic resonance images were taken of 56 schizophrenic patients with TD (TD group), 64 without TD (non-TD group), and 68 healthy controls (HC group). The motor-circuit area was selected as the seed region for a whole brain resting-state functional connectivity (rsFC) analysis. Psychopathological symptoms and TD severity were assessed with the Positive and Negative Syndrome Scale (PANSS) and Abnormal Involuntary Movement Scale (AIMS), respectively. Group differences and correlations among 18 brain regions of interest (e.g., the global strength of connectivity between two regions) were analyzed.
The analysis of variance results were as follows The three groups exhibited rsFC losses in the left primary motor cortex, bilateral parietal cortices, right postcentral gyrus, right putamen, right superior parietal lobule, right supplementary motor area and bilateral thalami (false discovery rate,p < 0.05). The TD group showed a significant rsFC loss between the right postcentral gyrus and the inferior frontal gyrus of the left triangular part when compared with the non-TD group (AlphaSim, p < 0.001), which was negatively correlated with the AIMS total score (r=-0.259, p = 0.03).
These findings may suggest dysfunction of the postcentral and inferior frontal gyri of the triangular part in patients with schizophrenia and TD.
These findings may suggest dysfunction of the postcentral and inferior frontal gyri of the triangular part in patients with schizophrenia and TD.Breast cancer is a complex cancer which includes many different subtypes. Identifying prognostic modules, i.e., functionally related gene networks that play crucial roles in cancer development is essential in breast cancer study. Different subtypes of breast cancer correspond to different treatment methods. The purpose of this study is to use a new method to divide breast cancer into different prognostic modules, so as to provide scientific basis for improving clinical management. The method is based on comparing similarities between modules detected from different weighted gene co-expression networks. The method was applied on genomic data of breast cancer from The Cancer Genome Atlas database and was applied to select differential modules between two groups of patients with significant differences in survival times. It was compared with a previously proposed module selection method. The result shows that our method outperforms the previously proposed one. Moreover, within the identified two differential modules, the first one is highly enriched with genes involved in hormone responds, the second one is highly related with biological process engaged in M-phase.