-
Patrick Stallings posted an update 24 days ago
and other cardiac diseases.
Canine hemangiosarcoma (HSA) is an aggressive cancer arising from multipotential bone marrow-derived stem cells. Anthracycline chemotherapy drugs have been the mainstay adjuvant chemotherapy following surgery with only modest improvement in survival and an attendant risk for adverse events. Immunotherapy, using a whole cell autologous cancer vaccine adjuvanted with MIM-SIS, may improve outcomes for dogs with HSA with a lower risk for adverse events compared with chemotherapy.
In cultured DH82 canine monocyte-like cells, autologous cancer vaccines prepared from 13 dogs with HSA increased MHC-II surface expression ranging from 20.0-60.4% on single-stained cells, CD80 surface expression ranging from 23.7-45.9% on single-stained cells, and MHC-II/CD80 surface expression ranging from 7.2-20.1% on double-stained cells. Autologous cancer vaccines were able to, on average, stimulate an up-regulation of MHC-II and CD80 by 48-fold as compared to media only (MHC-II + CD80 + cells 12.19 ± 3.70% vs. 0.25 ± 0.06%; p &lcancer vaccine represents an effective form of individualized immunotherapy that is an appealing option for dog owners not wanting to pursue adjuvant chemotherapy for HSA.
The adjuvanted autologous cancer vaccine is capable of up-regulating MHC-II and CD80 in cultured canine monocyte-derived cells, which are important stimulatory molecules in generating an immune response and improves survival time in dogs with metastatic (stage III) HSA when compared to surgical treatment alone. see more Autologous cancer vaccine-treated dogs had survival similar to those dogs treated with MTD chemotherapy without any observed adverse events. This autologous cancer vaccine represents an effective form of individualized immunotherapy that is an appealing option for dog owners not wanting to pursue adjuvant chemotherapy for HSA.In this study, the self-extracted constipation treatment of traditional Chinese medicine extracts was applied to constipated rats. To explore the mechanism and role of the Chinese medicine for the treatment of constipation, the 16S rRNA sequencing and qRT-PCR technology were used to analyze the intestinal flora. We found that the relative abundance of Firmicutes with constipation was significantly higher accounted for 86.7%, while the gut microbiota was significantly changed after taking a certain dose of Chinese medicine, greatly increased the relative abundance of Lactobacillus accounted for 23.1%, enhanced the symbiotic relationships of Lactobacillus with other intestinal flora. The total copies of intestinal bacteria in the constipated rats decreased after taking the traditional Chinese medicine. Finally, this study results provides a theoretical basis for the treatment and understand the mechanism and effect of traditional Chinese medicine on rate constipation.
Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood-brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets.
Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target’s natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis.
I1MIM represents a new therapeutic option to treat metastatic brain disease.
Characterized by abnormal lung growth or maturation, congenital diaphragmatic hernia (CDH) affects 13000 live births. Cellular studies report proximal (SOX2
) and distal (SOX9
) progenitor cells as key modulators of branching morphogenesis and epithelial differentiation, whereas transcriptome studies demonstrate ROBO/SLIT as potential therapeutic targets for diaphragm defect repair in CDH. In this study, we tested the hypothesis that (a) experimental-CDH could changes the expression profile of ROBO1, ROBO2, SOX2 and SOX9; and (b) ROBO1 or ROBO2 receptors are regulators of branching morphogenesis and SOX2/SOX9 balance.
The expression profile for receptors and epithelial progenitor markers were assessed by Western blot and immunohistochemistry in a nitrofen-induced CDH rat model. Immunohistochemistry signals by pulmonary structure were also quantified from embryonic-to-saccular stages in normal and hypoplastic lungs. Ex vivo lung explant cultures were harvested at E13.5, cultures during 4days and treated gh SOX2/SOX9balance.
These studies provided evidence of receptors and epithelial progenitor cells which are severely affected by CDH-induction from embryonic-to-saccular stages and established the ROBO2 inhibition as promoter of branching morphogenesis through SOX2/SOX9 balance.
Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy.
This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions.