-
Cooley Thorsen posted an update 2 months ago
The women further suggested information material in their own language with a simple, positive and concrete communication strategy. They would like to be involved in an awareness strategy and share the knowledge with their network.
Ethnic minority women were interested in a tailored intervention, and they were keen to contribute with ideas and preferences. The findings emphasized the potential of a tailored intervention with specific suggestions to the content when attempting to reduce inequality in cancer screening participation.
Minority women were involved in the interview study.
Minority women were involved in the interview study.
In this study, we administered immunity-and-matrix regulatory cells (IMRCs) via tail vein (IV) and intracerebroventricular (ICV) injection to 3-month-old 5×FAD transgenic mice to assess the effects of IMRC transplantation on the behaviour and pathology of early-stage Alzheimer’s disease (AD).
Clinical-grade human embryonic stem cell (hESC)-derived IMRCs were produced under good manufacturing practice (GMP) conditions. Three-month-old 5×FAD mice were administered IMRCs via IV and ICV injection. After 3months, the mice were subjected to behavioural tests and electrophysiological analysis to evaluate their cognitive function, memory ability and synaptic plasticity. The effect of IMRCs on amyloid-beta (Aβ)-related pathology was detected by thioflavin-S staining and Western blot. Quantitative real-time PCR, ELISA and immunostaining were used to confirm that IMRCs inhibit neuroinflammation. RNA-seq analysis was performed to measure changes in gene expression and perform a pathway analysis in response to IMRC treatment.
IMRC administration via tail vein injection significantly ameliorated cognitive deficits in early-stage AD (5×FAD) mice. However, no significant change was observed in the characteristic pathology of AD in the ICV group. learn more Plaque analysis revealed that IMRCs did not influence either plaque deposition or BACE1 expression. In addition, IMRCs inhibited inflammatory responses and reduced microglial activation in vivo.
We have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.
We have shown that peripheral administration of IMRCs can ameliorate AD pathology and associated cognitive deficits.Azole-resistant environmental Aspergillus fumigatus presents a threat to public health but the extent of this threat in Southeast Asia is poorly described. We conducted environmental surveillance in the Mekong Delta region of Vietnam, collecting air and ground samples across key land-use types, and determined antifungal susceptibilities of Aspergillus section Fumigati (ASF) isolates and azole concentrations in soils. Of 119 ASF isolates, 55% were resistant (or non-wild type) to itraconazole, 65% to posaconazole and 50% to voriconazole. Azole resistance was more frequent in A. fumigatus sensu stricto isolates (95%) than other ASF species (32%). Resistant isolates and agricultural azole residues were overrepresented in samples from cultivated land. cyp51A gene sequence analysis showed 38/56 resistant A. fumigatus sensu stricto isolates carried known resistance mutations, with TR34 /L98H most frequent (34/38).Soft rot disease of edible mushrooms leads to rapid degeneration of fungal tissue and thus severely affects farming productivity worldwide. The bacterial mushroom pathogen Burkholderia gladioli pv. agaricicola has been identified as the cause. Yet, little is known about the molecular basis of the infection, the spatial distribution and the biological role of antifungal agents and toxins involved in this infectious disease. We combine genome mining, metabolic profiling, MALDI-Imaging and UV Raman spectroscopy, to detect, identify and visualize a complex of chemical mediators and toxins produced by the pathogen during the infection process, including toxoflavin, caryoynencin, and sinapigladioside. Furthermore, targeted gene knockouts and in vitro assays link antifungal agents to prevalent symptoms of soft rot, mushroom browning, and impaired mycelium growth. Comparisons of related pathogenic, mutualistic and environmental Burkholderia spp. indicate that the arsenal of antifungal agents may have paved the way for ancestral bacteria to colonize niches where frequent, antagonistic interactions with fungi occur. Our findings not only demonstrate the power of label-free, in vivo detection of polyyne virulence factors by Raman imaging, but may also inspire new approaches to disease control.Environmental stimuli such as temperature, food, and smell significantly influence the physiology and behavior of animals. Animals are differentially adapted to maintain their internal body functions in response to varied environmental conditions. These external cues are sensed by specialized neurons which are a part of the chemosensory and thermosensory systems. The inability to respond correctly to varied environmental conditions may result in compromised bodily functions and reduced longevity. For example, the ability to sense food is derived from the integrated action of olfactory and gustatory systems. The damage to the olfactory system will affect our decision of palatable food items which in turn can affect the response of the gustatory system, ultimately causing abnormal feeding habits. Recent studies have provided evidence that aging is regulated by sensory perception of environment. Aging is one of the most common causes of various neurodegenerative diseases and the perception of environmental cues is also found to regulate the development of neurodegenerative phenotype in several animal models. However, specific molecular signaling pathways involved in the process are not completely understood. The research conducted on one of the best-studied animal models of aging, Caenorhabditis elegans, has demonstrated multiple examples of gene-environment interaction at the neuronal level which affects life span. The findings may be useful to identify the key neuronal regulators of aging and age-related diseases in humans owing to conserved core metabolic and aging pathways from worms to humans.